PLANE FAILURE

Lesson 5

LESSON 5 — ANALYSIS of PLANE FAILURE

Learning Outcomes -

- Analyze structural geologic and slope geometric conditions using stereonets;
- Analyze for factor of safety using standard formulae for Planar Failure;
- Determine critical tension crack location and depth.

Asymmetric plane failure

Tension crack

Base

Conditions for Plane Failure

- Sliding Plane Parallel to Slope Face
- Sliding Plane "Daylights" on Face
- Sliding Plane Dips > ø
- Release Surfaces at Sides of Block

Conditions for Plane Failure

Fig 5-1

Conditions for Plane Failure

Fig 5-1

Factor of Safety Calculation

Plane Failure Analysis Assumptions

- Sliding Plane & Tension Crack Parallel to Face
- Tension Crack Filled with Water to Depth zw
- Water Pressures Triangular Distributions
- Forces Act Through C. of G.
- Shear Strength Cohesion and Friction Angle
- No Resistance to Sliding on Side Release Surfaces
- Slice of Unit Thickness

Factor of Safety Calculation

Spreadsheet Analysis

PLANE FAILURE ANALYSIS

INPUT VARIABLES

Slope height, H	100	ft
Tension crack distance, b	16.4	ft
Water depth, Zw	14.5	ft
Rock unit weight, γ_r	155	pcf
Water unit weight, γw	62.4	pcf
Friction angle, •	20	deg
Cohesion, c	200	psf

Slope angles:

34 deg	34	Opper stope, Ψ _s
<mark>20</mark> deg	20	Base plane, ψ_p
<mark>76</mark> deg	76	Slope face, ψ _f

0 g

Slope Reinforcement:

Stope Reinforcement.			
Bolt/cable force, T	г	-	lb/ft
Bolt inclination, ψ	′ T	15	deg
Bolt inclination to normal, 0)	55	deg
Seismic/Blast Acceleration:			

Fraction gravity, α

CALCULATED VALUES

Tension crack depth,	Z	96.02	ft.
Weight of wedge, V	N	413,299	lb.
Length of failure surface,	Α	43.99	ft.
Hydrostatic uplift force, \(\mathbf{l}\)	U	19,899	1b.
Tension crack force, V	√ _n	2,244	1b.
Tension crack force, V	∕ p	6,164	1b.
Resisting force, F	R	142,094	1b.
FACTOR OF SAFETY, F.S.=		0.96	

Commercial Software

0.87

18.25t/ft

15.89t/ft

22.22t/ft 277.70ft^3/ft

12.25t/ft^2

15.68t/ft

0.0°

0.00t

0.0°

7.50t

346.0°

4.83t/ft

2.34t/ft

Factor of Safety

Driving Force

Resisting Force Wedge Weight

Wedge Volume

Shear Strength Normal Force

Plane Waviness

Active Bolt Force

Active Bolt Angle

Passive Bolt Force

Passive Bolt Angle

Tension Cracks - Red warning flag

Critical Tension Crack Location

Figure 5.5 Relates Depth (a) and Location (b) of Tension Crack to Slope Geometry

Effect of Ground Water on Stability

- Water Force V Acts in Tension Crack
 - Adds to Driving Force

$$V = \frac{1}{2} \gamma_{W} \times Z^{2}_{W}$$

(Eqn 5-5)

- Water Force U Acts on Sliding Surface
 - Decreases Normal Force

$$U = \frac{1}{2} \gamma_{W} \times Z_{W} (H + b \tan \psi_{S} - Z) \times consec \psi_{p}$$
 (Eqn 5-4)

Slope Reinforcement with Tensioned Rock Bolts

Rock Bolts Anchored Below Sliding Surface and Tensioned Against Face.

Reinforcement with Tensioned Bolts

Bolt Tension Increases Normal Force and Decreases Driving Force

$$F = \frac{cA + (W\cos\psi_p - U - V\sin+T\sin(\psi_f + \psi_P))\tan\phi}{W\sin\psi_p + V\cos\psi_p - T\cos(\psi_T + \psi_P)} \tag{Eqn 5-17}$$

Optimum Bolt Orientation ψT(OPT)

$$\phi = (\psi_{\mathsf{T}_{(\mathsf{OPT})}} + \psi_{\mathsf{P}}) \text{ or } \psi_{\mathsf{T}_{(\mathsf{OPT})}} = (\phi - \psi_{\mathsf{P}})$$

(Eqn 5-18)

LESSON 5 — ANALYSIS of PLANE FAILURE

Learning Outcomes -

- Analyze structural geologic and slope geometric conditions using stereonets;
- Analyze for factor of safety using standard formulae for Planar Failure;
- Determine critical tension crack location and depth.